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GLOBAL ELECTRICAL CURRENTS

ABSTRACT

The atmospheric electrical structure of the earth 1s postulated to
be controlled by a motivating force in the lower ionosphere which is
produced by interaction between neutral atmosphere tidal circulations
and the ionospheric plasma in the presence of the earth's magnetic field.
Associlated electric fields power the dynamo currents through the Hall
effact with a resulting development of a gross electric potential dis-
tribution in the lower ionosphere. Asymmetries in these hemispheric
potential distributicns result in exospheric current flows in low L-shells
and larger differences in potential produced - dynamo return current
flows in high magnetic latitudes result in strong currents through
high L-shells between auroral zones. Vertical thunderstorm currents
with their associated lightning discharges effectively connect the
earth to a low potential region of the dynamo circuit and thus supply
the earth with an average negative charge which motivates a leakage
tropospheric electrical circuit. In addition, the dynamo currents
maintain the magnetic polar regions at different potentials with a
resulting electrical exchange with the solar wind through the earth's
near space. These considerations indicate that observed electrical
and variable magnetic phenomena near the earth are all part of a single
comprehensive electrical current system.
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1. Introduction

A comprehensive concept of the earth's electrical structure has
been derived (Webb, 1968b) which provides a framework into which known
electrical phenomena may be fitted. A principal item in this new con-
cept is the nature of the motivating force which powers this global
electrical system. This power source is hypothesized to result frem
interaction between the neutral and ionized components of the lower
ionosphere, a process which derives its energy from the stratopause
thermal tidal circulations. Many details of this concept have not
been investigated, in part berause of the deep divisions which have
developed between various segments of the geo-sciences which are inte-
grated by tae concept. It is attempted here to delineate the overall

picture in a form which will facilitate comprehensive consideration
of the concept.

In additicn, further analysis of the basic physical processes which
produce the general motivating force is presented. These considerations
support the concept of a unified global structure, as opposed to the
past theories which have separated the earth's electrical structure into
more or less independent telluric (Chapman and Bartels, 1962), tropo-
spheric (Chalmers, 1967), lower ionosphere dynamos (Chapman and Badrtels,
1962), aurcral and airglow (Chamberlain, 1961) and exospheric currents
(Hines, et al., 1965). The several physical processes which have been
postulated in attempts to understand these phenomena separately are not
questioned at this point. It is presumed, however, that these processes
are secondary to the global structure, even though specific processes
may exert a firm local control.

2. Global Circuitry

The global electrical circuitry model postulated here is illustrated
in Fig. 1. e time selected for this presentation is at noon during
the summer solstice of the Northern Hemisphere, when, for geometric and
other reasons, conjugate points will generally exhibit higher electric
potentials in the Northern Hemispheric dynamo regions. The nomenclature
employad in Fig. 1 is:

- resistance

- current

telluric eircuits

- Northern Hemisphere

- Southern Hemisphere

~ fair-weather vertical circuits
- convective vertical circuits
- high latitudes

- midlatitudes

zonal dynamo circuits

- eguatorial

- inner radiation belt circuit
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2 - outer radiation belt circuit
3 - solar wind circuit

The basic driving force is oriented west-east near the 100 km
level in low latitudes of each hemisphere during local daytime. This
force drives the dynamo currents (I,) of more tnau 10° amperes which
produce a complex electric potentiai distribution 1in the lower iono-
sphere with hemispheric differences of the order of 108 volts. The
earth, located approximately 100 km under the spherical shell which
contains the dynamos, is connected to the dynamo circuits by vertical
convective currents (Ic), principally in late afternoon and evening
at low latitudes where the dynamo potentials are negative relative to
noontime. This geometry impresses an cbserved negative charge of more
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Figure 1. Schematic Diagram of the Global Electrical Circuitry
for the Local Noon Meridian.
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than 10° coulombs on the earth, which in turn produces an approximately
symmetrical 103 amperes vertical current (I_.) through the fair-weather

semiconducting lower atmosphere with associated telluric currents (I )

through the earth's crust to thunderstorm regions.

In general, the electric potentials at conjugate points of the two
hemispheres will not be equal. In low latitudes exospheric currents
) will flow along magnetic field lines principally to relax potential
}ferences imposed by differences in the basic dynamo driving forces.
Auroral zone hemispheric potential differences will produce larger exo-
spheric currents (I.) at high magnetic latitudes, principally as a result
of the asymmetry begween the rotational and magnetic systems.

The final supplementary current path is formed by interaction of the
earth's magnetosphere with the solar wind. Polar regions of the lower
ionosphere will be maintained at different electrical potentials by the
dynamo currents, and currents (I.,) through the solar wind plasma will re-
sult. It is probable that the géo-segment of this circuit will incor-
porate the I, circuit. During strong solar disturbances this current
is known to éecome intense, approaching the 10° amperes of the dynamo
circuits, although in general the exospheric currents are orders of mag-
nitude smaller than the dynamo currents,

The earth's global electrical structure is than established by the
potential field of the dynamo currents. Tropospheric and exospheric
electrical structure is formed by leakage current paths which are con-
trolled by the basic dynamo potentials.

3. The Dynamo Driving Force

The dynamo currents represent the principal geo-electric phenomenon,
with average intensities which are two orders of magnitude greater than
other circuits. An understanding of the earth's electrical structure re-
quires that the force which drives these lower lonosphere currents be
clearly delineated.

A new attempt at this problem has been made by Webb (1968a, 1968b,
1969) based on an assumed net vertical motion imposed on the upper atmos-
phere by tidal circulations of the stratopause regions. The characteristic
cold mesopause indicates, in agreement with other observations, the presence
of turbulent flow in the mesosphere to transport heat downward through
adiabatic processes. A model of the general daytime vertical structure of
moclecular and eddy transport coefficients based on limited amounts of data
(Lettau, 1951; Booker, 1956; Zimmerman and Champion, 1963; Kellogg, 1964;
Johnson and Wilkins, 1965) is presented in Fig. 2. Higher values of eddy
transport coefficients have been reported in the 80 to 150 km region (Zim-
merman and Champion, 1963) but the molecular diffusion stratification which
is observed above approximately 105 km (Blamont and de Jager, 1961) indicates
that a portion of the observed values may result from electrically forced
diffusion of the ionized trail sensors. These considerations then indicate
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Figure 2. Model Molecular (solid curve) aad rddy (daslied curve)
Niffusion Profiles

that the 70-100 km reglcn i< characterized by eddyv transport coefficients
{r. +the range of 103 - 10° m-sec !.

Ncv the daytime electron-positive ion concentration (n) in the 70-100
«m region varies over routhy three orders of magnitude, with a 100 km
value of approximately 101! electrons and positive ions per cubic meter.
Negative charged particle lapse rates of S x 105 p m™“ at 100 km, 8 x
10 m-“ at 90 km and 10° p m-* at 80 km with this eddy transport (Fig. 2)
will nroduce a downwerd flux of collision-controlled charged particles
given by the relation
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As has been pointed vut before (Fejer, 1965; Webb, 1968b), in this region
of the atmosphere collision processes will transport positive ions but

are ineffective in transporting electrons. Downward transport of positive
ions by these eddies in an electrically neutral atmosphere will effect
charge separation at a nominal velocity given by

(2)

<
[}
3 |

The nominal downward velocities of positive ions under the above conditions
will then be of the order of 1 mps at 80 km, .8 mps at 90 km and .5 ups at
100 km.

As was shown by Webb (1968b) such charge separation will, in equatorial
ragions, result in production of an upward-diracted electric field which
will force positive icns to migrate upstream with an equal speed so that
electrical equilibrium is achieved. This latter situation is described by
the relation

qE = Mww (3)

where q 1s the particle charge, E is the equilibrating .electric field, M
i« the particle mass, v is the collisicn frequency and w is the particle
v;locitv relative to the medium. The data presented above with the assump-
ions of Webbh (1968b) indicate that electric fields directed upward with
raxirum intensity of 0.2 v m™! at 80 km will be generated by this mechanism.
At night this mechanism will be reduced in intensity by approximately two
orders of magnitude as a result of a similar decrease in electron demsity.
This situation has been shown (Webb, 1968a; 1968b) to be adequate to pro-
duce, through thé Hall effect, an electric potential field which is con-
sistent with known electrical phenomena of the region.

The above discussion and that of Webb (1968b) indicate that the driv-
ing forces of the dynamo currents are reasonably derived from vertical
sharge separaticn produced by collision processes in the circulations and
rurbulence produced by the stratopause thermal tides.

4. Tropospheric Electrical Structure

The fair-weather electrical structure of the lower atmosphere has
been extensively explored (Chalmers, 1967). It is variable, with a general
resistivity vertical structure of the type illustrated in Fig. 3 (Cole and
Pierce, 1965). Here the bulk resistivity of the air exhibits its charac-
teristic high value near the surface, decreasing rapidly with height so that
the vertical path resistance is established by the resistance of the lower
few kilometers. Almost 987 of the total vertical path resistance of rough-
ly 1.8 x 10!7 ohm m? is obtained in the first 10 km, and almost 90% is ob-
tained in the first 5 km, ‘
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¥igure 3. Typical Low-Latitude Vertical Resistivity Structure of the §
Troposphere and Lower Stratosphere. :
In the stable falr-weather case, the vertical distribution of atmos- :
pheric space charge which produces the observed change in potentiil gra- :
dient can be caiculated approximately from the relation i
i
2y 3
3 H
p=e, =, )
3h?

vhere V 1s the electric potential, and € = 8.854 x 107!2 farads per meter is
the permittivity of free space. Neglegting horizontal currents, the fair=-
weather eleccric current of the lower atmosphere will be constant with
beight, and, to a good approximation (Ohm's law), the potential distribu-
tion has the character of the resistivity curve of Pig. 3, with an overall
potential difference of approximately 3 x 135 volts. By applying Eq.4 to
these data, a representative vertical fair-s .cather space charge distribu-
tion 1s obtained as illustrated in Fig. 4. Clearly, the positive space
charge of the atmosphere which must face the observed surface charge density
of approximately -8.8 x 10710 coulombs m™2 is principally contained in

the lower troposphere. The traditional leaky capacitor concept of fair- E
weather electrical structure is thus modified to inciude a diffuse upper
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plate located in the lower troposphere. The fair-weather troposphere
capacitor plate contains a total positive space charge of approximately
400,000 coulomts, with a roughly equal negative charge on the surface
of the earth. In addition, the vertically integrated space charge of
the dynamo region (75 - 120 km) of roughly 107!% coulombs m=? is negli-
gible compared to thege tropospheric space charges.
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Figure 4. Typical Low-Latitude Vertical 3tructure of the Atmospheric
Fair-Weather Positive Electric Space Charge.

The very low electrical mobility of most tropospheric ions in the
boundary layer indicates that, in the presence of the general fair-weather
potential gradient, electrically forced molecular diffusion will be, on
occasion, exceeded in intensity by eddy diffusion. Mixing produced by
thermal and frictional effects may dominate electrical physical processes
under certain conditions so that the electrical structure which results
frequently deviates from the simple picture of a homogeneous, stratified,
static fair-weather field which is assumed above.
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Certain features of the tropospheric electrical structure are com-

paratively static. This is true of any high impedance circuit, however,
and does not alter the basically dynamic nature of earth electrification.
The gross capacitance and charge of the earth's tropospheric electricgl
system (C_~ 1 farad) and small vertical current densities (approximately
2 x 10-12eamperes m~%) of the troposphere effectively filter the variail.-
aspects of atmospheric electricity, shielding the surface lavers from the
very dynamic aspects of higher levels.

The fair-weather capacitor electrical structure described above is
effectively disrupted by occurrence of convective systems. Air that is
rich in positive charge (Fig. 4) is assembled by the lateral flow, im-
mobilized by droplets at low levels (1-2 km), and transported vertically
by these convective systems in a thin column which spans the lower 10-25
km of the atmosphere as is illustrated in Fig. 5. The relatively low
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Figure 5. 1Initial space charge distribution associated with a convective
cell before the dynamo potentials become involved. The dashed
curve indicates the structure of the cloud, and the arrows in-
dicate net motions of charged particles.
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mobilities of tropospheric electrical charges are generally reduced
drastically by condensation processes so that characteristic surface
boundary laver electrical time constants of tens of minutes are effec-
tively extended to beyond the half-hour lifetime of the average convec-
tive storm. If a 14 mps mean vertical flow through a 7 km diameter
throat of a convective cloud (Goldman, 1968) wirh 10® excess positive
charges per cubic meter (Fig. 4) is assumed, the more intense convective
systems will transport approximately 107" coulombs of resident positive
charge upward each second. A first response to this positive convective )
current will be an intensification of the fair-weather type field under : Lo
the cell as the positive space charge converges. Rapidly, however, X 3
; neutralization of this convection-borne positive space charge relative ! i
: to the earth will be accomplished by negative ions in the upper atmosphere B
' so that the negative surface charge on the ground under the cell will

atabilize. : » 3

T el AR i )

oy

Intzoducticn of this charge structure into the upper troposphere ' ?
and lower stratosphere will result in strong response by the highly
conducting upper atmosphere, Relaxation time constants (T = "o, ¢ -

conductivity, Chalmers, 1967, p. 39) of approximately 100 seconds at F
5 km, 20 seconds at 10 km, 4 seconds at 15 km and one second at 30 km : ;
in clear air around the thunderstorm mayv be expected. Upward transport

~f a cvlir Irical column of air containing roughly one coulonu of posi-
tive charge into the 5-15 km region of the storm can be expected to very g
guickly result in flow of an equal negative charge onto the edge of the ;
cloud in the lower atmosphere. The mobility of the charge carriers in ' Vi
tnis conduction current will also decrease drastically when they enter
the cloud as a result of capture by cloud droplets. This process will
result in development of a thin sheath of negative charge around the
positive core of the storm. The intruding positive space charge may
then be eliminated by discharges within the cloud between these centers
of charpe concentration or by recombination at the top of the cloud
where the clcud particles evaporate

o e ———— o A e s o o

o

The capacitance of this vertical cloud system per unit length can be : 1
~atimated by the relation for specific capacitance of a cylindrical 1
rapacitor with inner plate at radius a and outer plate at radius b (Wilson, . 3
1458) ‘ 1

2n € ¢
0 .

C=
ln(g) (farads per meter) (5)

Usiny, values of ¢ = 1, a = 3.25 km and b = 3.5 km, the capacitance of this
vertical cloud system is found to be approximately 7 x 107!0 farads m™!. :
This estimate indicates that the positive space charge of the fair-weather : -
field near the surface will supply a specific positive charge concentration ' ;
(q) of approximately 2 x 107% coulombs per meter length of the cloud. The
equilibrium electric potential of the inner cylinder which results from this
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central charge can be approximated by (Wilson, 1958)

v~ md—n (%) (volts) (6)

a
o}

vhich yields approximately 3 x 103 volts.

The boundary of the storm cloud will acquire a neutralizing negative
charge resulting from a downflow of negatively charged particles from the
highly conducting dynamo region above the storm. This electric current,
which is directed upward, must have a magnitude of 10™“ amperes to match
the upwelling positive current in the cloud. This vertical current has
important impiications for the electrical structure of the lower atmosphere
and the earth's surface. Our electrostatic structural assumptions of the
fair~weather situation are immediately invalidated as this upward current
punctures the earth-troposphere capacitor, and the following two major
conditions will prevail:

a. There will be a V = IR voltage drop along the current path from the
storm cloud to the dynamo circuit above. Nominal values of I = 10-'0
amperes m~2 and R = 10!5 ohm m? give potential drops of 10° volts, with
the top of the storm at the higher potential.

b. The top and sides of the cloud will assume the potential of the dynamo
current above the storm plus the difference of (a). This latter item is
of major importance, since it has been shown (Webb, 1968b) that the poren-
tial drops of the dynauso currents introduce gross horizontal potential
variations of the order of 10% volts into the global electrical structure
of the lower ionosphere. Thus, the storm cloud upwelling of positive
charge from the fair-weather field discussed above will have the net re-
sul® of adjusting the potential of the outer margins of a convective clond
down to altitudes of 1-2 km toward the gross potential ot tie dynamo re-
glon above the stomm.

Stergis, Rein and Kangas (1957) have measured the potential gradient
and conductivity neav 20 km above thunderstorms from the direct current
point of view, obtaining results indicating an upward current cf the order
«f cae amper¢ over each storm with maximum negative potential gradients
¢f a few hundreds of volts per meter. Using 200 volts m ! at 20 km, 50
volts m ! at 25 km and the resistivity curve of Fig. 3, the pctential
¢ op in this current path approximates 5 x 10° wolts under steady-state
cencitione,

When the dynamo potential above a :cnvective cloud is nrgative rela-
tive to noontime (iate afterncon and nighttime; Wehb, 1968b), a positive
surface charge will be impressed on the earth's surface in the vicinity
of the convective cloud, the tropospheric electric field will reverse
slgn relative to the general fair-weather situation and the potentjal
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difference between the earth's surface and the outer margins of the cloud
will be double that of the dynamo circuit to which the storm is connected.

Introduction of negative dynamo entials of the order of 6 x 10° volts
or greater to near the earth's .e will induce coronal discharge of
positive charge (Chalmers, 196, apter 9). With development of convec-

tive systems, enhancements of such space charge by more than three orders
of magnitude ahove the fair-weather values have heen observed (Vonnegut,
Moore and Botka, 1959). Thus, the 107" amperes vertical current mentioned
above as produced by the falr-weather space charge will be increased to
more than 107! amperes, and the captive charge of the cloud condenser will
be increased to more than 1073 coulombs per meter for a total cloud charge
of the order of 10-100 coulombs. These values imply general potentials
across the cloud condenser system of 10° to 107 volts, and it is likely
that inhomogeneities in the entire process can easily produce the local
potentials of 10% volts and greater which appear to be required to ini-
tiate observed lightning discharges.

The tropospheric return current through thunderstorms must then con-
sist of three modes. The first is upward transport of positive charge
in the convective current, and the transport of these charges may repre-
sent an added source of energy for the tropospheric electrical circuit.
The second is a conduction flow upward outside the convective system
involving positive coronal charges migrating upward from the surface
and combining with downward-moving negative charges, moving in the forced
diffusion mode at higher altitudes and in convective downward motions
around the cloud system at low altitudes. The third mode is high inten-
sity upward current flow across the lowrr atmosphere in intermittent low
resistance lightning discharge paths. Convective cells thus establish
iocal electrical structures in which the approaching negative charges
from above polarize the earth's surface, producing a negative potential
gradient and an upward current flow.

The concept of thunderstorm electrification presented above is paral-
lel to the concepts developed by Grenet, Vonnegut and Moore (Grenet, 1947,
1959; Vonnegut, 1955; Vonnegut 2t al., 1959; Moore et al., 1962; Vonnegut
et al., 1961; Moore et al., 1960; Vonnegut and Moore, 1960; Moore et al.,
1958), with the major exception of addition of the horizontally stratified
100 km region dynamo circuit potential to induce corona and activate the
electrical processes of convective cloud systems. Convective energy is

necessary in initiating this serles of events, but the impact of the dynamo

electric potentials is overwhelming. These considerations indicate that

the partial agreements which have been obtained by numerous thunderstorm

electrification theories (Chalmers, 1967) are simply fortuitous, with the
basic tropospheric charge-separating mechanism centering on vertical eddy
transport of captive space charge.

The tropospheric electrical circuit elements discussed above require
that a portion of the circuit lie in the earth. The diffuse global fair-

weather current must converge to a few local storm areas for the return
trip through lightning discharges. Elementary physical considerations
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indicate that these telluric currents will flow in the surface layers of
the earth. Since thunderstorms and their assoclated lightning events
exhibit maximum occurrence at low latitudes in the afternoon and evening,

these telluric currents must be generally divected equatorward during the
daytime and poleward at night.

Electric currents have been known to exist in the earth's surface
since the mid-19th Century. Use of long copper telegraph lines over
land regions (a 107 - 10° ohm mcter reduction in resistivity) indicated
the presence of low-latitude potential differences as high as 107° v m~!
over the surface nf the earth witl their assoclated currents. Chapman
and Bartels (1962) have summarized the eariy studies of this phenomenon.
They indicate resistivities of a few tenths cf an ohm meter in sea water
and 1-50 ohm meters in moist loam, with an average value of 100 ohm meters
for the general topsoil. Increased resistivity with depth in the ocean
results from the colder waters of ocean depths. All considerations in-
dicate that telluric currents are a shallow surface phenomenon.

If a 1 km layer is considered representative, the 1077 - 10~8 amperes
m~2 which Chapman and Bartels reported for continental areas yield inte-
grated half-day hemispheric telluric currents in the 104 - 103 amperes
range. This value is low since high~conductivity ocean paths will provide
partial shorts for the continental currents. The inteus:ity of telluric
currents may thus be considered adequate to supply the consolidated flow
from the globai fair-weather charge accumulation to the bases of lightning
paths. Redding (1967) has pictorially described the diurnal structure
of low-latitude telluric currents, showing that they do indeed flow toward
low latitudes during the day and toward the poles at night, indicating that
they flow toward the region of priuncipal thunderstorm activity.

Severe complications in telluric current observations ¢ aused by tech-
nique difficulties, local impedance variations and surface charges prevent
detailed association of this current segment with the vertical components
vf Lthe tropospheric electric circuit. Much more JInformatlon Is ajvan ve-
nuired relative to the location of lightning reoturn naths before an adeguate
usclerstanding can be obtained. It is concluded, however, that rellurle
curtents are indeed adequate to provide the earth circuit segment for the
tropospheric current path of tihe dynamo circuits.

A detailez schematic diagram of the tropospheric electrical circuitry
v a vertical low-latitude zonal plane from the high dynamo potential point
ai. 2 P.M. into the low potential region of nighttime is presented in Fig. 6.
The principal driving force {with potential diffcrences of the order of 10°f
v} 1s lacated at the base cf the horizontally stratified dvnamo circuit neasr
£0 km altitude (Webb, 1968b). This force causes current to flow from low
to high potential and results in accumulation of a diffuse positive space
charge in the region marked A(q ~ 10 em™3). The principal leakage return
path for this potential difference is the dynamo current (approximately 10>
amperes) circuit through high latitudes at the 100 km level, but a secondary 1
tropospheric return current (I, approximately 1500 amperes) circuit is
established in the tropospheric mode illustrated in Fig. 6.

12
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Figure 6. Schematic Circuit of Tropospheric Electrification in a Vertical
Low-Latitude Longitudinal Plane from 2 P.M. to after Sunset.

1he fair-weather vertical portion of the tropospheric circuit is
renresenced by the resistance R, and the capacitance C . Nominal values
of electrical circuit elements in this region are patheresistances of
1017 ohm mzl specific capaciiance of 107!° farads m™2, current densities
of 2 x 107 amperes m™< and 3 x 10° volts ovcrall potential difference
(lower at tne ground) as was discussed above. Telluric impedances (R )
vicld potential drops of 107® volts m™! with continental current den-
cities of 1077 amperes m™° in the general case. Stratospheric impedance
(R ) above convective storws appears to be equivalent to that of the
stratosprere in other locations (Fig. 3), but the area above a convective
storm is the site of larger current densities and thus of larger electric
tields,

While the conductivity in a cloud is subject to debate, it will be
aszumed here that in strong convection, high cloud droplet concentrations
(> 10° m'3) will prohibit effective molecular diffusion of charges so
that resistance to electrical current flow in the cloud will become very
s.reat, with general cloud characteristics of a condenser (C _, Fig. 6) of
U1"°f capacitance for a 20 km length cloud. During initial stages of con-
vective development, the electrical force provided by convective eddy
motions will be limited to supplying current flows of the order of 107"
amperes in individual systems. When the convective cloud system becomes
effectively connected to the dynamo electrical potential above it, how-
ever, coronal discharges from the earth's surface into the low-level air
which serves as the source for convective mass transport will strongly
enhance the electrical transport process. In this case, the convective
transport current will become very strong, possibly contributing signif-
icantly to the total current flow of the tropospheric electrical system.
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On occasion lightning discharges (S; in Fig. 6) may serve to negate this
contribution.

Observations indicate that lightning discharges may act as switches
(S; and §3 in Fig. 6) to short the charges which accumulate in the clond-
generated open circuit. During the period in which a lightning path
exists, the path resistance of the convective segment of the tropospheric
portion 1s reduced many orders of magnitude, and the upward tropospheric
current flow will then be through the resistance R . When lightning paths
exist, the tropospheric leakage current path of thé dynamo circuilt is

R= Rf + Rt + R8

which reduces to R, + R to a good agproximation. These are known to
be approximately 1618 afd 10!6 ohm m?, respectively (Fig. 3).

Current densities through these two portions of the tropospheric
circuit will be different, however, due to the significant difference in
cross-sectional areas of these circuit elements. Peak current densities
over severe storms appear to be of the order of 102 times the fair-
weather values, but reasonable mean values over storm areas would be of
the order of ten times greater. This would indicate that the potential
drop of the fair-weather leg (R_.) is several times that of the strato-
spheric branch (R ). Flow through this voltage divider thus maintains
the earth near the average negative potential of the portion of the
dynamo circuit under which the convective storms operate.

Since the fair-weather current flow is generally toward the earth
even relatively close to thunderstorms, it 1s clear that the intermittent
nature of lightning is of considerzble luportance. Through this mecha-
nism, the earth is closely related to the mean electrical potential field
of the dynamo region above active storms, but the brevity of the events
(milliseconds) does not allow the sluggish troposphere (tens of minutes)
to approach equilibrium with the new circuit parameters ducing this special
event. The average potential of the earth is thus maintatned at a negative
value relative to the tropospheric condenser plate by the local dynamic
characteristics of this tropospheric circuit.

5. Exospheric Electrical Structure

The vertical distribution of the dynamo currents at low latitudes
has been derived by Webb (1968b) from stratospheric tidal circulation
data. Chapman and Bartels (1962) and recently Matsushita and Maeda (1965)
and Matsushita (1965) have used data on variations in the geomagnetic
field to Aerive the lateral distribution of electric current systems which
flow in the upper atmosphere. Under the assumption tnat these "dynamo"
currents are confined to the 100 km region globally by the unique "Rall"
and "Pedersen" conductivity profiles it is possible to derive the giobal
current density of that level. Conductivity structures of the 100 km
surface may be approximated from published mean electron density data
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(Wright, 1962) and magnetic field aspect data (Vestine, et al., 1947)
for particular values of collision frequency. Through use of these
sources of information it is possible to calculate the electric poten-

tial field of the 100 km surface.

The resgult of such model calculations for Northern Hemisphere fall
equinox time is illustrated by the model potential distribution presented
in Fig. 7. A high-potential region of the order of 10% volts is indicated

n‘
”
110" |
——
1
UBSOLAR OB
Figure 7. Model electrical potential field for the lower ionosphere at

equinox time. Units are volts. The dashed curve represents
the auroral oval.
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by these considerations to be located in early afternoon low latitudes,
with an expansive region of low potential covering nighttime regions.
High-latitude auroral regions are indicated to be at intermediate poten-
tials, with considerable variations ir potential around the auroral oval.
The position of the southern magnetic pole and its auroral oval at the
time of Fig. 7 indicates that there will be significant differences in
potential of the dynamo regions between conjugate points, even in this
relatively symmetric equinox situation.

Consideration of the variations which will be introduced into these
hemispheric potential distributions diurnally as a result of rotational
and magnetic axes asymmetries indicates that local potentials and conju~
gate potential differences will vary markedly in the course of a day.

In addition, the known gross inhomogeneity of the ionosphere in small
scales and the detail structure of the stratospheric tidal circulation
and tropospheric lightning perturbations will assure inhomogenecus dvnam.
currents and thus highly inhomogenecous potential fields. Marked diifer-
onces will occur at similar geomagnetic latitudes between summer and
winter hemispheres as a result of differences in conductivity structure
and intensity of the tidal circulations. These differences are in addi-
tion to the above-mentioned local and hemispheric variations, with the
regult that the global potential field of the 100 km level will be very
complex indeed. The smoothed curves of Fig. 7 must be iuterpreted as
averaged conditions with gross variations superimposed locally.

All of the above calculations have been based on the assumption that
the dynamo circuits are independent current systems which are isolated
from other sources or sinks of electrical energy. This is an approxi~
mation which, on the lower tropospheric side, has been evaluated (Webb,
1968b) to involve neglect of currents of the order of onc percent of the
dynamo current system, and thus generaily negligible relarive to the 100
km dynamo current, and potential structure. An exception is to be noted
in the case of short period changes resulting from events such as light-
ning discharges, where large charge traunsports (30 coulombs moved 10 km
vertically) do introduce gross potential changes for short periods.

Boundary conditions on the upper side of the dynamo currents are
less likely to be negligible, however, as a result of currents which
may flow in the high conductivity plasma in which are embedded magnetic
field lines of the magnetosphere. At some level in the upper ionosphere
the known reduction of plasma density and the increase in dynamic imped-
ance (Swift, 1965) with height will reduce the conductivity (increase
the resistivity) to the point that substantial electric fields will exist
along the magnetic field. These magnetic-field~aligned electric fields
will result in acceleration of charged particles to higher energies than
are representative of ambient neutral particles and will accelerate the
positive and negative particles differently according to mass. In the
upper portions of this accelerating region, some of the more favored
particles will gain escape velocities and will move out along the mag-
netic field toward the conjugate point of the other hemisphere where
they will execute a reversed but similar program of energy exchange with
that upper ionosphere region.
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The above described vertical motions will represent new sources and
slnks of electric current for the dynamo currents which we have described
above and thus modify the potential field of the dynamo region. Under
quiescent conditions, these exospheric currents are indicated to be of
the order of 10712 am~2 (0'Brien, 1964) and thus are reasonably negli-
gible, but there is observational evidence that on occasions of solar
disturbances the<e interhemispheric currents exhibit extreme values of
107% am™2 (Sharp, et al., 1967), and thus may be competitive locally with
the dynamo currents in intensity and may introduce gross modifications
to the simple E-region potential distribution picture presented in Fig. 7.
This is especially tc be expected in high latitudes where interaction
between the earth and the solar wind can be expected to support large
vertical currents.

The dynamo currents of the E-region will be modified by currents
flowing through the exosphere in paths foried by the earth's magnetic
field and the exospheric plasma. The conductivities of these paths are
complex, with charged particle diffusion modes the rule in low alvitudes
and particle transient modes dominate in the magnetosphere. Buneman
(1959) indicates that the magnetospheric longitudinal (along the field)
conductivity is given by

. = 10-8
. 5.556 x 10 wpe . 7

where mpe is the plasma frequency of the electrons. This indicates a

conductivity of approximately .5 mho m~! in the 500-600 region, decreas-
ing to approximately 1072 at high altitudes.

These values indicate that cxospheric path resistances on low L shells
(1.1) are of the order of 102 ohm m?, on auroral L shells (L5) of the order
of 1010 ohm m? and in the polar regions of the order of 101! ohm m?.
These path resistances may be compared with estimated 1010 ohm m? (Webh,
1968b) resistance of the dvnamo 100 km level return current circuit
through the auroral zones and the 1017 ohm m? (Webb, 1968b) resistance
of the tropospheric circuit.

In low latitudes, magnetospheric currents will flow as a result of
fferences in the conjugate potentials of che powered (zonal) and relaxa-
mn

¢d
ticnal (meridional) segments of the dynamo circuits. These currents (Il'

]

ig. 8) are in the region of the inner Van Allen belt and are thus assumed
3 he associated with development of that trapped radiation. These currents .
act to smooth differences between the hemispheric dynamo current generators.

(a1
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Figure 8. Schematic of exospheric current systems for the case ir which
the dynamo current potential fields hold the northern magnetic
high latitude at a positive potential relative to the Southern
Hemisphere.

Zonal flow of the dynamo currents in auroral zone E-regions will re-
sult in strong zonal potential gradieants around tne avroral oval. 1In-
spection of the geometry of the high latitude case (Webb, 1968b) indicates
that when the hemispheric dynamo potentials in the driving regions are
equal, differing hemispheric meridional path lengths of the dynamo return
currents would tend to produce occasional conjugate potential differences
of more than 10% of the total dynamos potential gradients, or of the order
of 105 volts in high latitudes. Exospheric currents along the magnetic
field will develop in response to these gradients and teund to reduce them.
The result will be current flows (IZ) as is illustrated in Fig. 8.

At high geomagnetic latitudes, the magnetic field lines between hemi-
spheres become electrically completed as a result of interaction with the
plasma and magnetic field of the solar wind. Nonlinear acceleration proc-
esses will result i{n potential differences along magnetic field lines, and
the fnterhemispheric potential differences will be reduced with increesing
latitudes in polar reglons as a result of these currernt flows. The current
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flow in this third magnetospheric current regioi is designated I. in
Fig. 8, the dashed portion indicating the uncertain current path™through
the magnetospheric tail and the solar wind.

These three current systems are assumed to provide support for the
ring current which has been hypothesized to circle the earth (Chapman and
Bartels, 1962), produced by transverse drift motions imparted to charged
particles participating in these magnetospheric currents as a result of
accelerating electric fields. The gross geometry of I, indicates that
it will be ineffective in producing the magnetic effecés of the ring
current which are observed at the earth's surface. Satellite observa-
tions indicate that I, is relatively stable. It is concluded, then, that
the principal contributor to surface-observed ring current magnetic field
changes 18 probably I., presumably as a result of solar wind currents from
1, through the high-latitude ionosphere and through the I, circuit. The
currents through I, and I, are thus directly modulated by the intensity
of the solar wind.” This Is the "indented current ring" of Akasofu and
Chapman (1964). Thus, auroral activity, the ring current and its associa-
ted magnetic effects, polar storms and other physical processes assoclated
with I2 and I3 will vary with these two controlling processes.

Small-scale variations in the dynamo currents will induce inhomo-
geneities in the interhemispheric current flows, resulting in strong
gradients in these currents with magnetic latitude and loogitude. These
inhomogeneities in ionospheric potentials will introduce variations in
exospheric current densities which can be expected to result in electric
fields transverse to the geomagnetic field which will, in turn, result
in particle motions normal to the plane of these two vectors. Transport
of plasma into and/or out of the plasmasphere may be expected to result.

Measurements cof precipitation currents in the ilonosphere indicate
gennrral values of approximately 10712 am™2 and maximum values as high
as 10~'! am™? in middle latitudes (Paulikas, et al., 1966; Mozer and
Bruston, 1966), 10~7 am™? in auroral zones (O'Brien, 1964; Sharp, et al.,
1967), and 10712 am™? in polar regions (Reid, 1965). Observations of
the polar electrojet magnetic effects indicate high-latitude ionvspheric
currents in the 100 km altitude region during disturbed periods of the
order of 10° amperes which are thus of the same order as the basic dynamic
¢nrrents.  This "ring current", mentioned above, which is indicated by
global magnetic field variations under disturbed conditions, is estimated
to be of the order of 10° amperes if it is located in the L5 regions.
4ssuming that these currents are segments of the same current system (i.e.,
the ring current and the auroral electrojet are not completely closed at
their respective levels), vertical currents into and out of the lonosphere
are inferred. Maximum values of cross-sectional areas of the two available
vertical current paths in each hemisphere are of the order of 10!3 m? which
then infers magnetic-field-oriented vertical currents greater than 10~8
amperes m~ 2,
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Preliminary inspection of the geometry of this situation indicates
that optimum conditions for flow of high-1
will occur at equinox time (Webb, 1968b). This results from the enhanced
polar conductivity of the ionosphere which is denied one or the other
polar region at solstice time. That is, the circuit of I, is characterized
by increased path resistance at solstice time. 2

atitude exospheric currents

6. Conclusions

The considerations presented above provide a coherent global system
of electrical currents in the earth's environment. The principal driving
force is indicated to be vertical transport of positive ions in the lower
ionospheric region. Through the Hall effect, the dynamo currents are
powered, and tropospheric and exospheric currents simply repre.ent leakage
paths for the basic dynamo currents.

The model of earth electrification presented here is at strong vari-
ance with previous concepts of electrical phenomena in the earth's vicinity.
In particular, introduction of neutral-electrical interaction as the basic
motivating force of the general electrical structure represents a distinct
new line of reasoning. Long-held views of thunderstorm processes as the
basic energy source for the lower atmosphere and more recent models of
magnetospheric processes as the basic energy source of the upper atmosphere
lose some of their flavor in light of these new considerations. The idea
of an equipotential ionosphere appears at this time to be clearly in error.

Tl.e simplest physical considerations would indicate that a unified
global electrical structure would be the most likely case. Maintenance of
isolated independent electrical systems in various parts of the atmosphere
would appear to be a very difvicult situation to achieve. Failure of the
various segregated models to effect adequate explanations for the observed
local electrical structure and particularly for the interface structure
which must exist has provided some indication of their inadequacy. Exper-
imental difficulties have in many cases precluded confirmation of postulated
structure and today remain the most difficult obstacle to further progress.
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